СДАМ ГИА: РЕШУ ЦТ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Вариант № 33608

Если вы занимаетесь самостоятельно, решите задания в тетради, на следующем шаге сверьтесь с решениями и оцените себя. Если вариант задан учителем, вы можете вписать или загрузить в систему решения заданий. Учитель сможет отметить ошибки, прокомментировать и оценить загруженные решения. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.0:00:00
1
Задание 1 № 1

Если число а расположено на координатной прямой левее числа b, то зависимость между числами а и b можно записать в виде неравенства:




2
Задание 2 № 932

На рисунке изображен треугольник ABC, в котором ∠ACB = 41°, ∠AMN = 107°. Используя данные рисунка, найдите градусную меру угла BAC.




3
Задание 3 № 93

Среди точек выберите ту, которая принадлежит графику функции, изображённому на рисунке:




4
Задание 4 № 694

Результат разложения многочлена x (2ab) + b − 2a на множители имеет вид:




5
Задание 5 № 5

Из точки А к окружности проведены касательные AB и АС и секущая AM, проходящая через центр окружности О. Точки В, С, M лежат на окружности (см. рис.). Найдите величину угла AOB, если




6
Задание 6 № 636

На рисунке изображены развернутый угол AOM и лучи OB и OC. Известно, что ∠AOC = 102°, ∠BOM = 128°. Найдите величину угла BOC.




7
Задание 7 № 997

Найдите площадь фигуры, изображенной на рисунке.




8
Задание 8 № 488

Вычислите .




9
Задание 9 № 519

Площадь круга равна . Диаметр этого круга равен:




10
Задание 10 № 700

Из точки A к окружности проведены касательные AB и AC и секущая AM, проходящая через центр окружности O. Точки B, С, M лежат на окружности (см. рис.). Известно, что BK = 4, AC = 7. Найдите длину отрезка AK.




11
Задание 11 № 431

Четырехугольник MNPK, в котором ∠N=142°, вписан в окружность. Найдите градусную меру угла K.




12
Задание 12 № 1309

В треугольнике ABC Найдите длину стороны CB.




13
Задание 13 № 403

Параллельно стороне треугольника, равной 6, проведена прямая. Длина отрезка этой прямой, заключенного между сторонами треугольника, равна 4. Найдите отношение площади полученной трапеции к площади исходного треугольника.




14
Задание 14 № 944

Из пунктов A и B, расстояние между которыми 170 км, одновременно навстречу друг другу выехали два автомобиля с постоянными и неравными скоростями: из пункта A — со скоростью a км/ч, из пункта B — со скоростью b км/ч. Через некоторое время автомобили встретились. Составьте выражение, определяющее расстояние (в километрах) от пункта A до места встречи автомобилей.




15
Задание 15 № 525

Корень уравнения равен:




16
Задание 16 № 466

Какая из прямых пересекает график функции в двух точках?




17
Задание 17 № 947

График функции, заданной формулой y = kx + b, симметричен относительно начала координат и проходит через точку A (6; 12). Значение выражения k + b равно:




18
Задание 18 № 858

Высоты остроугольного равнобедренного треугольника ABC (AB = BC) пересекаются в точке O. Если высота AD = 15 и AO = 12, то длина стороны AC равна:




19
Задание 19 № 529

Если в правильной четырехугольной пирамиде высота равна 6, а площадь диагонального сечения равна 12, то ее объем равен ...


Ответ:

20
Задание 20 № 770

Найдите произведение большего корня на количество корней уравнения


Ответ:

21
Задание 21 № 111

Основание остроугольного равнобедренного треугольника равно 10, а синус противоположного основанию угла равен 0,6. Найдите площадь треугольника.


Ответ:

22
Задание 22 № 562

Пусть (x;y) — целочисленное решение системы уравнений

 

 

Найдите сумму x+y.


Ответ:

23
Задание 23 № 653

Найдите наибольшее целое решение неравенства


Ответ:

24
Задание 24 № 744

Три числа составляют геометрическую прогрессию, в которой . Если второй член прогрессии уменьшить на 18, то полученные три числа в том же порядке опять составят геометрическую прогрессию. Если третий член новой прогрессии уменьшить на 48, то полученные числа составят арифметическую прогрессию. Найдите сумму исходных чисел.


Ответ:

25
Задание 25 № 205

Найдите произведение суммы корней уравнения на их количество.


Ответ:

26
Задание 26 № 416

Найдите значение выражения: .


Ответ:

27
Задание 27 № 987

Найдите (в градусах) сумму корней уравнения на промежутке (100°; 210°).


Ответ:

28
Задание 28 № 58

В равнобокой трапеции большее основание вдвое больше каждой из остальных сторон и лежит в плоскости α. Боковая сторона образует с плоскостью α угол, синус которого равен . Найдите 36sinβ, где β — угол между диагональю трапеции и плоскостью α.


Ответ:

29
Задание 29 № 389

Количество целых решений неравенства равно ...


Ответ:

30
Задание 30 № 660

Решите уравнение

.

 

В ответ запишите значение выражения , где x — корень уравнения.


Ответ:
Времени прошло:0:00:00
Времени осталось:3.0:00:00
Завершить тестирование, свериться с ответами, увидеть решения.