СДАМ ГИА: РЕШУ ЦТ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Вариант № 32190

Если вы занимаетесь самостоятельно, решите задания в тетради, на следующем шаге сверьтесь с решениями и оцените себя. Если вариант задан учителем, вы можете вписать или загрузить в систему решения заданий. Учитель сможет отметить ошибки, прокомментировать и оценить загруженные решения. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.0:00:00
1
Задание 1 № 781

На координатной прямой отмечены точки O, A, B, C, D, F.

Если координата точки A равна , то числу 1 на координатной прямой соответствует точка:




2
Задание 2 № 722

Укажите номер рисунка, на котором изображены фигуры, симметричные относительно прямой l.




3
Задание 3 № 1060

На рисунке изображен график движения автомобиля из пункта O в пункт N. Скорость движения автомобиля на участке MN (в км/ч) равна:




4
Задание 4 № 694

Результат разложения многочлена x (2ab) + b − 2a на множители имеет вид:




5
Задание 5 № 365

Если , то равно:




6
Задание 6 № 666

На координатной плоскости изображен параллелограмм ABCD с вершинами в узлах сетки (см.рис.). Длина диагонали AC параллелограмма равна:




7
Задание 7 № 67

Решите неравенство .




8
Задание 8 № 1305

Через точку А к окружности с центром в точке О проведены касательные АВ и АС, где В и С — точки касания. Найдите градусную меру угла ВАС, если




9
Задание 9 № 249

Найдите значение выражения НОК(12, 18, 36)+НОД(39,52).




10
Задание 10 № 40

Площадь осевого сечения цилиндра равна 10. Площадь его боковой поверхности равна:




11
Задание 11 № 1308

Cумма первых четырех членов геометрической прогрессии равна 60, знаменатель прогрессии равен 2. Найдите второй член геометрической прогрессии.




12
Задание 12 № 192

Свежие фрукты при сушке теряют a % своей массы. Укажите выражение, определяющее массу сухих фруктов (в килограммах), полученных из 20 кг свежих.




13
Задание 13 № 373

Параллельно стороне треугольника, равной 10, проведена прямая. Длина отрезка этой прямой, заключенного между сторонами треугольника, равна 6. Найдите отношение площади полученной трапеции к площади исходного треугольника.




14
Задание 14 № 1197

Составьте уравнение для определения площади заштрихованной фигуры.




15
Задание 15 № 15

Сократите дробь




16
Задание 16 № 646

ABCDA1B1C1D1 — прямоугольный параллелепипед такой, что AB = 20, AD = 4. Через середины ребер AA1 и BB1 проведена плоскость (см.рис.), составляющая угол 60° с плоскостью основания ABCD. Найдите площадь сечения параллелепипеда этой плоскостью.




17
Задание 17 № 497

Если , то значение выражения равно:




18
Задание 18 № 738

Сумма корней (корень, если он единственный) уравнения равна (равен):




19
Задание 19 № 289

Найдите произведение корней уравнения .


Ответ:

20
Задание 20 № 80

Найдите количество всех целых решений неравенства .


Ответ:

21
Задание 21 № 201

В окружность радиусом 6 вписан треугольник, длины двух сторон которого равны 6 и 10. Найдите длину высоты треугольника, проведенной к его третьей стороне.


Ответ:

22
Задание 22 № 1012

Пусть (xy) — решение системы уравнений

Найдите значение 4yx.


Ответ:

23
Задание 23 № 203

Найдите сумму (в градусах) наименьшего положительного и наибольшего отрицательного корней уравнения


Ответ:

24
Задание 24 № 984

Найдите сумму корней уравнения


Ответ:

25
Задание 25 № 415

Четырёхугольник ABCD вписан в окружность. Если , то градусная мера между прямыми AB и CD равна ...


Ответ:

26
Задание 26 № 86

Найдите значение выражения , если , .


Ответ:

27
Задание 27 № 57

В арифметической прогрессии 130 членов, их сумма равна 130, а сумма членов с четными номерами на 130 больше суммы членов с нечетными номерами. Найдите сотый член этой прогрессии.


Ответ:

28
Задание 28 № 478

Прямоугольный треугольник с катетами, равными 1 и , вращается вокруг оси, содержащей его гипотенузу. Найдите значение выражения , где — объём фигуры вращения.


Ответ:

29
Задание 29 № 779

Найдите значение выражения


Ответ:

30
Задание 30 № 930

Объем прямоугольного параллелепипеда ABCDA1B1C1D1 равен 1728. Точка P лежит на боковом ребре CC1 так, что CP : PC1 = 2 : 1. Через точку P, вершину D и середину бокового ребра AA1 проведена секущая плоскость, которая делит прямоугольный параллелепипед на две части. Найдите объём большей из частей.


Ответ:
Времени прошло:0:00:00
Времени осталось:3.0:00:00
Завершить тестирование, свериться с ответами, увидеть решения.