СДАМ ГИА: РЕШУ ЦТ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости




Вариант № 20425

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.0:00:00
1
Задание 1 № 271

Функция не определена в точке:




2
Задание 2 № 962

На рисунке изображен треугольник ABC, в котором ∠ACB = 35°, ∠AMN = 107°. Используя данные рисунка, найдите градусную меру угла BAC.




3
Задание 3 № 1060

На рисунке изображен график движения автомобиля из пункта O в пункт N. Скорость движения автомобиля на участке MN (в км/ч) равна:




4
Задание 4 № 664

Результат разложения многочлена x (4ab) + b − 4a на множители имеет вид:




5
Задание 5 № 275

Если , то равно:




6
Задание 6 № 336

Результат упрощения выражения имеет вид:




7
Задание 7 № 1160

Вычислите




8
Задание 8 № 878

Даны числа: 0,35 · 106; 3,5 · 105; 3500; 35 · 10−4; 0,0035. Укажите число, записанное в стандартном виде.




9
Задание 9 № 489

Площадь круга равна . Диаметр этого круга равен:




10
Задание 10 № 340

Площадь осевого сечения цилиндра равна 32. Площадь его боковой поверхности равна:




11
Задание 11 № 521

Четырехугольник MNPK, в котором ∠N=132°, вписан в окружность. Найдите градусную меру угла K.




12
Задание 12 № 432

На одной чаше уравновешенных весов лежат 4 яблока и 2 груши, на другой — 2 яблока, 4 груши и гирька весом 80 г. Каков вес одной груши (в граммах), если все фрукты вместе весят 1500 г? Считайте все яблоки одинаковыми по весу и все груши одинаковыми по весу.




13
Задание 13 № 913

Сократите дробь




14
Задание 14 № 764

Известно, что наименьшее значение функции, заданной формулой y = x2 + 4x + c, равно −1. Тогда значение c равно:




15
Задание 15 № 1198

Окружность задана уравнением и проходит через вершину параболы Найдите радиус этой окружности.




16
Задание 16 № 946

Упростите выражение




17
Задание 17 № 257

График функции, заданной формулой y = kx + b, симметричен относительно начала координат и проходит через точку A (2; 10). Значение выражения k + b равно:




18
Задание 18 № 408

Найдите наименьший положительный корень уравнения .




19
Задание 19 № 49

Найдите произведение корней уравнения .


Ответ:

20
Задание 20 № 1010

Найдите сумму корней (корень, если он единственный) уравнения


Ответ:

21
Задание 21 № 411

Сумма корней (или корень, если он один) уравнения равна ...


Ответ:

22
Задание 22 № 502

Найдите периметр правильного шестиугольника, меньшая диагональ которого равна .


Ответ:

23
Задание 23 № 293

По двум перпендикулярным прямым, которые пересекаются в точке O, движутся две точки M1 и M2 по направлению к точке O со скоростями 1 и 2 соответственно. Достигнув точки O, они продолжают свое движение. В первоначальный момент времени M1O = 2 м, M2O = 9 м. Через сколько секунд расстояние между точками M1 и M2 будет минимальным?


Ответ:

24
Задание 24 № 894

Найдите сумму целых решений неравенства


Ответ:

25
Задание 25 № 1052

Решите неравенство В ответе запишите сумму целых решений, принадлежащих промежутку [−20; −2].


Ответ:

26
Задание 26 № 956

Найдите сумму наименьшего и наибольшего целых решений неравенства


Ответ:

27
Задание 27 № 747

Найдите сумму целых решений неравенства


Ответ:

28
Задание 28 № 478

Прямоугольный треугольник с катетами, равными 1 и , вращается вокруг оси, содержащей его гипотенузу. Найдите значение выражения , где — объём фигуры вращения.


Ответ:

29
Задание 29 № 419

Количество целых решений неравенства равно ...


Ответ:

30
Задание 30 № 780

Трое рабочих (не все одинаковой квалификации) выполнили некоторую работу, работая поочередно. Сначала первый из них проработал часть времени, необходимого двум другим для выполнения всей работы. Затем второй проработал часть времени, необходимого двум другим для выполнения всей работы. И, наконец, третий проработал часть времени, необходимого двум другим для выполнения всей работы. Во сколько раз быстрее работа была бы выполнена, если бы трое рабочих работали одновременно? В ответ запишите найденное число, умноженное на 12.


Ответ:
Времени прошло:0:00:00
Времени осталось:3.0:00:00
Завершить тестирование, свериться с ответами, увидеть решения.